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As these equations show, the component S 11 of the linearized strain tensor can be used in exact 
finite-strain analyses in the special case of uniaxial strain. The components 1111 and S II are related 
by the exact direct and approximate inverse relations 

'111 = Sl1 + sit, Sl1 = 1111 - l1il + 211L + .... 
The specific volume and density changes are related to the strain by the equations 

S 11 = V/ VR - I = pJ p - 1, 

(2.4) 

(2.5) 

where p = l /v is the mass density of the material at a given point and the subscript R designates 
evaluation in the reference state. When a body is sUbjected to uniaxial strain, its shape as well as 
its volume is changed and this change in shape is described by an angle y (called the tensor com­
ponent of the shear strain) that is related to the strain by the equation: 

y = (tan - I (Sl1 + 1)) - in = tS11 + ... . (2.6) 

Uniaxial strain is one of the simplest cases one can encounter and considerable effort is expended 
to ensure that it is the deformation produced in most shock-compression experiments. 

Stress. The boundary loads and internal forces in continuous bodies can be represented by the 
symmetric tensor t called the Cauchy stress tensor. The component tij of this tensor is the compo­
nent in the Xj direction of the force per unit area (in the deformed configuration) acting across a 
surface having its normal in the Xi direction. Because of its symmetry, t can be expressed in dia­
gonal form. That is, the coordinates X can be chosen so that tij = ° for all i of. j. In this case the 
diagonal components are called principal stresses. Our sign convention has been chosen so that 
a positive value of one of the principal stresses corresponds to tension in the associated direction in 
the body. 

When a slab of isotropic material, or a suitably oriented slab of lower symmetry, is loaded 
uniformly over one or both faces, a coordinate normal to the faces is an axis of principal stress. 
Suitably chosen directions in the plane of the slab are also directions of principal stress. When the 
response of the material is isotropic, the two lateral principal stresses are equal, so that 

t11 of. 0, t22 = t33 of. 0, tij = 0, i of. j. (2.7) 

When these relations hold (with t 11 of. t22 ), every plane in the body except those exactly parallel or 
perpendicular to the 1 axis is subjected to a shear stress. The magnitude of this stress is maximized 
on planes lying at 45° to the 1 axis, and its value on these planes is 

-r = t(t 11 - t22)· (2.8) 

The pressure in the body is defined in terms of the average of the principal stresses : 

p = -i(tl1 + t22 + t33) = -i(tll + 2t22)· (2.9) 

From these formulae we see that the longitudinal stress component can be expressed in the form 

4 
tll = - P + 31", (2.10) 

which shows how the applied load is borne in part by the pressure in the material and in part by 
its resistance to shear. The lateral stress components can be written t22 = t33 = - P - fr. In an 
experiment, the stress component t 11 is subject to control by the imposed boundary conditions. 
The lateral stresses t22 = t33 are not normally controlled and take whatever values are consistent 
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with the state of uniaxial strain until they are altered by the arrival of waves from the lateral 
boundaries of the sample. It is this situation that leads to the statement that the sample is inertially 
confined. 

Equations of balance. The forces in material bodies, and the motions they undergo, are constrain­
ed by the requirement that the equations representing the principles of conservation of mass and 
of balance of momentum and energy be satisfied. When the fields of interest are smooth enough, 
these relations can be expressed in terms of partial differential equations that take the forms 

op a 
at + ax (pu) = 0, 

Ot11 . 

ax = pu, (
oe oe) au 

p at + ax u = t 11 ax (2.11) 

when restricted to motions of uniaxial strain in which body forces, thermal conduction and radia­
tion are neglected. The quantity e appearing in eq. (2.11h is the internal energy density. Here, and 
subsequently, we have omitted the subscript 1 from vector components in the Xl direction and 
from the coordinate itself. 

The smoothness conditions required for the validity of equations (2.11) are satisfied for most 
values of x and t of interest in specific problems, but they may be violated on certain surfaces 
propagating through the material. One such surface, the shock wave (or simply shock), forms the 
principal subject of this review. A shock is a propagating surface across which the particle velocity 
and stress are discontinuous. At such a surface the differential equations of balance are replaced 
by the algebraic equations 

[p(u - un] = 0, 

In these relations u" is the velocity of normal displacement ofthe shock relative to the Xl coordinate, 
and the brackets designate the jump in the enclosed quantity at the wave: [<p] = <p - - <p +, where 
<p + and <p - are limits of some function <p as the wave is approached from the front (the material 
into which it is advancing) and from the rear, respectively. 

A less severe discontinuity than a shock is the acceleration wave, so called because the particle 
acceleration experiences a jump across the wave even though the particle velocity is continuous. 
Acceleration waves have been the subject of considerable theoretical [73C4, 76Cl] and some 
experimental [74N4, 79G2] interest in recent years. Investigation of these waves is closely related 
to the present subject and offers considerable scientific promise. 

The foregoing differential equations of motion and jump conditions have been expressed in 
terms of the independent variables x and t, the spatial or laboratory coordinates and time. In 
many cases it is convenient to deal with equivalent relations expressed in terms of the material 
coordinates. When this transformation is made, the field equations become 

(2.12) 

with the density and displacement gradient standing in the relation (2.5). Similarly, the jump 
conditions for a shock wave take the form 

[u + (pJp)U] = 0, (2.13) 

where U is the "Lagrangian" velocity of the wave, i.e., that relative to the X (== X 1) coordinate. 
These latter relationships are often rewritten in the form 

[pJp] = -[u]jU, {-t 11 ] = PRU[u], [e] = -2
1 

(til + til) [pJp] , (2.14) 
PR 


